Infinity Imagined
Multicellular Organic
Neural Network
Lives in Nitrogen-Oxygen Atmosphere
270 K - 300 K
Eats, Breathes, Thinks, Creates
Planetary Nebula NGC 2438 
This image of the solar corona contains a color overlay of the emission from highly ionized iron lines and white light taken of the 2008 eclipse. Red indicates iron line Fe XI 789.2 nm, blue represents iron line Fe XIII 1074.7 nm, and green shows iron line Fe XIV 530.3 nm. This is the first such map of the 2-D distribution of coronal electron temperature and ion charge state
In this picture, the Sun’s surface is quite dark. A frame from a movie recorded on November 9th by the orbiting TRACE telescope, it shows coronal loops lofted over a solar active region. Glowing brightly in extreme ultraviolet light, the hot plasma entrained above the Sun along arching magnetic fields is cooling and raining back down on the solar surface. Hours earlier, on November 8th, astronomers had watched this particular active region produce a not so spectacular solar flare. Still, the M-class flare spewed forth an intense storm of particles, suddenly showering satellites near the Earth with high energy protons. The flare event was also associated with a large coronal mass ejection, a massive cloud of material which impacted our fair planet’s magnetic field about 31 hours later. The result … a strong geomagnetic storm.
This artist’s impression shows sunrise over CoRoT-7b, the smallest-known exoplanet. The world is about 70 percent larger than Earth. Now, a team led by Brian Jackson at NASA’s Goddard Space Flight Center finds that the planet may be the rocky remains of a gas giant planet whose atmosphere was evaporated by close proximity to the star.
The Carnia Nebula
In a supernova remnant known as the Jellyfish Nebula, Suzaku detected X-rays from fully ionized silicon and sulfur — an imprint of higher-temperature conditions immediately following the star’s explosion. The nebula is about 65 light-years across
 
 A spectacular Hubble Space Telescope image reveals the heart of the Lagoon Nebula. Seen as a massive cloud of glowing dust and gas, bombarded by the energetic radiation of new stars, this placid name hides a dramatic reality.  The Advanced Camera for Surveys (ACS) on the NASA/ESA Hubble Space Telescope has captured a dramatic view of gas and dust sculpted by intense radiation from hot young stars deep in the heart of the Lagoon Nebula (Messier 8). This spectacular object is named after the wide, lagoon-shaped dust lane that crosses the glowing gas of the nebula.  This structure is prominent in wide-field images, but cannot be seen in this close-up. However the strange billowing shapes and sandy texture visible in this image make the Lagoon Nebula’s watery name eerily appropriate from this viewpoint too.
Located four to five thousand light-years away, in the constellation of Sagittarius, Messier 8 is a huge region of star birth that stretches across one hundred light-years. Clouds of hydrogen gas are slowly collapsing to form new stars, whose bright ultraviolet rays then light up the surrounding gas in a distinctive shade of red.  The wispy tendrils and beach-like features of the nebula are not caused by the ebb and flow of tides, but rather by ultraviolet radiation’s ability to erode and disperse the gas and dust into the distinctive shapes that we see.  Young stars that are still surrounded by an accretion disc occasionally shoot out long tendrils of matter from their poles. Several examples of these jets, known as Herbig-Haro objects, have been found in this nebula in the last five years, providing strong support for astronomers’ theories about star formation in such hydrogen-rich regions.

Supernova Remnant W49B
Supernova remnant SN 1006
La Lune.
This is a picture of coronal and zodiacal light (CZL) taken with the Clementine spacecraft, when the sun was behind the moon. The white area on the edge of the moon is the CZL, and the bright dot at the top is the planet Venus.
« Future   181 182 183 184 185 186 187 188 189 190   Past »


powered by tumblr